Django-piston




Ref:resentational state transfer

Set of design criteria for building
distributed hypermedia systems inspired
by the principles that made the
World Wide Web succesful



Principles

e Client-server

e Stateless

e Cacheable

* Layered system

e Uniform interface
— |dentification of resources

— Manipulation of resources through these
representations

— Self-descriptive messages
— Hypermedia as the engine of application state



Regource Oriented Architecture

A RESTful architecture for designing web
services



Architecture

e Tied to HTTP
e Uniform interface

e Addressability

— clean, meaningful, well structured
e Safety
* |dempotence
 Connectedness

e Statelesness
— No state means scalable and reliable



A resource

“A resource is anything important enough to be
referenced as a thing in itself”

-- RESTful Web Services, O’Reilly



Has a representation

Data format documenting current/intended
state of the resource



%Used to transfer state

Client is able to change server state by sending a
representation of the new state of a resource.



Django-piston

“A mini-framework for Django
for creating RESTful APIs.”

‘LJ bitbucket



Features

* Ties into Django's internal mechanisms.

e Supports OAuth out of the box (as well as
Basic/Digest or custom auth.)

* Doesn't require tying to models, allowing
arbitrary resources.

e Speaks JSON, YAML, Python Pickle & XML



Features

Ships with a convenient reusable library in
Python

Respects and encourages proper use of HTTP
(status codes, ...)

Has built in (optional) form validation (via
Django), throttling, etc.

Supports streaming, with a small memory
footprint.

Stays out of your way.



APl that exposes information about countries



The model

django.db models

Country(models.Model):

name = models.CharField(blank=False,
max_length=100, db_index=True)

slug = AutoSlugField(populate_from="name’)



Country overview

* Request to /country/ will result in a JSON
representation of all countries (the queryset)

e Request to /country/1/ will result in returning
only the country object with pk 1



Implementation

piston.handler BaseHandler
models Country

CountryHandler(BaseHandler):
model = Country
allowed_methods = ('GET',)

django.conf.urls.defaults patterns, url
piston.resource Resource
handlers CountryHandler

urlpatterns = patterns('’,
url(r’Acountry/(?P<pk>[A/]+)/$",
Resource(CountryHandler)
D>

)



Using slugs

* Request to /country/ will result in a JSON
representation of all countries (the queryset)

* Request to /country/netherlands/ will result
in returning only the country object with the
slug field set to netherlands



Implementation

CountryHandler(BaseHandler):

read(self, request, country_slug=None):
country_slug None:
get_object_or_404(Country,
slug=country_slug)

Country.objects.all()



Updating countries

* PUT Request to /country/1/ with all of the
models variables will result in a change of the
resource state (to the new desired state)



Implementation

CountryHandler(BaseHandler):
model = Country
allowed_methods ('GET', '"PUT")



Validation of PUT

* PUT Request to /country/1/ should be
validated (and if incorrect, PUT should not
change the state of the system)



Implementation

django forms

CountryForm(forms.ModelForm):
Meta:
model = Country

CountryHandler(BaseHandler):
@validate(CountryForm, "PUT')

update(self, request, pk):
super(CountryHandler, self).update(request, pk)



Authentication

* PUT Request to /country/1/ should be
validated with existing Django users

* [fincorrect, PUT should not change the state
of the system



Implementation

piston.authentication HttpBasicAuthentication

basic_auth = \
HttpBasicAuthentication(realm="CountryService")

urlpatterns = patterns('’',
url(r'AC?P<country>[A/]+)/%,
Resource(CountryHandler,
authentication=basic_auth)

),



And more

* Throttling
e Custom emitters

* Streaming



Questions?



Best practices

* versioning in your api

* using headers -> localization/content
negotiation

* make a separate api namespace

* have each functional part of the api be it's

own app (just like you would normally do with
django)



